53,413 research outputs found

    Relativistic N-boson systems bound by pair potentials V(r_{ij}) = g(r_{ij}^2)

    Full text link
    We study the lowest energy E of a relativistic system of N identical bosons bound by pair potentials of the form V(r_{ij}) = g(r_{ij}^2) in three spatial dimensions. In natural units hbar = c = 1 the system has the semirelativistic `spinless-Salpeter' Hamiltonian H = \sum_{i=1}^N \sqrt{m^2 + p_i^2} + \sum_{j>i=1}^N g(|r_i - r_j|^2), where g is monotone increasing and has convexity g'' >= 0. We use `envelope theory' to derive formulas for general lower energy bounds and we use a variational method to find complementary upper bounds valid for all N >= 2. In particular, we determine the energy of the N-body oscillator g(r^2) = c r^2 with error less than 0.15% for all m >= 0, N >= 2, and c > 0.Comment: 15 pages, 4 figure

    Convexity and potential sums for Salpeter-like Hamiltonians

    Full text link
    The semirelativistic Hamiltonian H = \beta\sqrt{m^2 + p^2} + V(r), where V(r) is a central potential in R^3, is concave in p^2 and convex in p. This fact enables us to obtain complementary energy bounds for the discrete spectrum of H. By extending the notion of 'kinetic potential' we are able to find general energy bounds on the ground-state energy E corresponding to potentials with the form V = sum_{i}a_{i}f^{(i)}(r). In the case of sums of powers and the log potential, where V(r) = sum_{q\ne 0} a(q) sgn(q)r^q + a(0)ln(r), the bounds can all be expressed in the semi-classical form E \approx \min_{r}{\beta\sqrt{m^2 + 1/r^2} + sum_{q\ne 0} a(q)sgn(q)(rP(q))^q + a(0)ln(rP(0))}. 'Upper' and 'lower' P-numbers are provided for q = -1,1,2, and for the log potential q = 0. Some specific examples are discussed, to show the quality of the bounds.Comment: 21 pages, 4 figure

    Discrete spectra of semirelativistic Hamiltonians from envelope theory

    Get PDF
    We analyze the (discrete) spectrum of the semirelativistic ``spinless-Salpeter'' Hamiltonian H = \beta \sqrt{m^2 + p^2} + V(r), beta > 0, where V(r) represents an attractive, spherically symmetric potential in three dimensions. In order to locate the eigenvalues of H, we extend the ``envelope theory,'' originally formulated only for nonrelativistic Schroedinger operators, to the case of Hamiltonians H involving the relativistic kinetic-energy operator. If V(r) is a convex transformation of the Coulomb potential -1/r and a concave transformation of the harmonic-oscillator potential r^2, both upper and lower bounds on the discrete eigenvalues of H can be constructed, which may all be expressed in the form E = min_{r>0} [ \beta \sqrt{m^2 + P^2/r^2} + V(r) ] for suitable values of the numbers P here provided. At the critical point, the relative growth to the Coulomb potential h(r) = -1/r must be bounded by dV/dh < 2 \beta/\pi.Comment: 20 pages, 2 tables, 4 figure

    Energy bounds for the spinless Salpeter equation: harmonic oscillator

    Get PDF
    We study the eigenvalues E_{n\ell} of the Salpeter Hamiltonian H = \beta\sqrt(m^2 + p^2) + vr^2, v>0, \beta > 0, in three dimensions. By using geometrical arguments we show that, for suitable values of P, here provided, the simple semi-classical formula E = min_{r > 0} {v(P/r)^2 + \beta\sqrt(m^2 + r^2)} provides both upper and lower energy bounds for all the eigenvalues of the problem.Comment: 8 pages, 1 figur

    Factors Contributing to the Catastrophe in Mexico City During the Earthquake of September 19, 1985

    Get PDF
    The extensive damage to high‐rise buildings in Mexico City during the September 19, 1985 earthquake is primarily due to the intensity of the ground shaking exceeding what was previously considered credible for the city by Mexican engineers. There were two major factors contributing to the catastrophe, resonance in the sediments of an ancient lake that once existed in the Valley of Mexico, and the long duration of shaking compared with other coastal earthquakes in the last 50 years. Both of these factors would be operative again if the Guerrero seismic gap ruptured in a single earthquake

    Coulomb plus power-law potentials in quantum mechanics

    Full text link
    We study the discrete spectrum of the Hamiltonian H = -Delta + V(r) for the Coulomb plus power-law potential V(r)=-1/r+ beta sgn(q)r^q, where beta > 0, q > -2 and q \ne 0. We show by envelope theory that the discrete eigenvalues E_{n\ell} of H may be approximated by the semiclassical expression E_{n\ell}(q) \approx min_{r>0}\{1/r^2-1/(mu r)+ sgn(q) beta(nu r)^q}. Values of mu and nu are prescribed which yield upper and lower bounds. Accurate upper bounds are also obtained by use of a trial function of the form, psi(r)= r^{\ell+1}e^{-(xr)^{q}}. We give detailed results for V(r) = -1/r + beta r^q, q = 0.5, 1, 2 for n=1, \ell=0,1,2, along with comparison eigenvalues found by direct numerical methods.Comment: 11 pages, 3 figure

    Relativistic N-Boson Systems Bound by Oscillator Pair Potentials

    Full text link
    We study the lowest energy E of a relativistic system of N identical bosons bound by harmonic-oscillator pair potentials in three spatial dimensions. In natural units the system has the semirelativistic ``spinless-Salpeter'' Hamiltonian H = \sum_{i=1}^N \sqrt{m^2 + p_i^2} + \sum_{j>i=1}^N gamma |r_i - r_j|^2, gamma > 0. We derive the following energy bounds: E(N) = min_{r>0} [N (m^2 + 2 (N-1) P^2 / (N r^2))^1/2 + N (N-1) gamma r^2 / 2], N \ge 2, where P=1.376 yields a lower bound and P=3/2 yields an upper bound for all N \ge 2. A sharper lower bound is given by the function P = P(mu), where mu = m(N/(gamma(N-1)^2))^(1/3), which makes the formula for E(2) exact: with this choice of P, the bounds coincide for all N \ge 2 in the Schroedinger limit m --> infinity.Comment: v2: A scale analysis of P is now included; this leads to revised energy bounds, which coalesce in the large-m limi

    Application of satellite imagery to hydrologic modeling snowmelt runoff in the southern Sierra Nevada

    Get PDF
    There are no author-identified significant results in this report

    Semiclassical energy formulas for power-law and log potentials in quantum mechanics

    Full text link
    We study a single particle which obeys non-relativistic quantum mechanics in R^N and has Hamiltonian H = -Delta + V(r), where V(r) = sgn(q)r^q. If N \geq 2, then q > -2, and if N = 1, then q > -1. The discrete eigenvalues E_{n\ell} may be represented exactly by the semiclassical expression E_{n\ell}(q) = min_{r>0}\{P_{n\ell}(q)^2/r^2+ V(r)}. The case q = 0 corresponds to V(r) = ln(r). By writing one power as a smooth transformation of another, and using envelope theory, it has earlier been proved that the P_{n\ell}(q) functions are monotone increasing. Recent refinements to the comparison theorem of QM in which comparison potentials can cross over, allow us to prove for n = 1 that Q(q)=Z(q)P(q) is monotone increasing, even though the factor Z(q)=(1+q/N)^{1/q} is monotone decreasing. Thus P(q) cannot increase too slowly. This result yields some sharper estimates for power-potential eigenvlaues at the bottom of each angular-momentum subspace.Comment: 20 pages, 5 figure

    Survey of electrical resistivity measurements on 8 additional pure metals in the temperature range 0 to 273 K

    Get PDF
    Electrical resistivity measurements on pure metals in temperature range 0 to 273
    corecore